

Function Diagram

Block Diagram

BN 5983.53

Circuit Diagram

- According to
- Performance Level (PL) e and category 4 to EN ISO 13849-1: 2008
- SIL Claimed Level (SIL CL) 3 to IEC/EN 62061
- Safety Integrity Level (SIL) 3 to IEC/EN 61508
- Output: $3 \mathrm{NO}, 1 \mathrm{NC}$ contacts for AC 400 V
- Optionally gold-plated contacts to switch small loads (input for PLC)
- 1-channel or 2-channel connection
- LED displays for channels 1 and 2
- Feedback circuit X3-X4 for monitoring external contactors
- Removable terminal strips
- Overvoltage and short circuit protection
- Width 100 mm

Approvals and Marking

* see variants

Application

Protection of people and machines

- Emergency-stop circuits on machines
- Monitoring of safety gates

Indication

LED power supply:
LED S12 / K2:
LED S22 / K3
on when operating voltage present
on when supply on relay K2
on when supply on relay K3

Notes

The PE terminal permits operation of the device in IT systems with insulation monitoring and also serves as a reference point for testing the control voltage. The internal short-circuit protection will be bridged on DC devices, if the protective ground is connected to terminal PE.
One or more extension modules BN 3081 or external contactors with forcibly guided contacts may be used to multiply the number of contacts of the emergency-stop module BN 5983.

ATTENTION - AUTOMATIC START!

According to IEC/EN 60 204-1 part 9.2.5.4.2 it is not allowed to restart automatically after emergency stop. Therefore the machine control has to disable the automatic start after emergency stop.

Connection Terminals

Terminal designation	Signal designation
A1 (+)	$+/$ L
A2 (-)	$-/ \mathrm{N}$
S12, S22, S34, X3, X4, X5	Inputs
S11, PE(-)	Outputs
$13,14,23,24,33,34$	Forcibly guided NO contacts for release circuit
$41,42,53,54$	Forcibly guided indicator output

Input

Nominal voltage U_{N} :
Voltage range: at 10% residual ripple: at 48% residual ripple: Nominal consumption: Nominal frequency: Control voltage S11: Control current: Minimum voltage at terminals S12, S22:

Contacts
BN 5983.53:

Output

AC 24, 42, 48, 110, 127, 230, 240 V
DC 24, 48, 110 V
AC $0.8 \ldots 1.1 U_{N}$
DC $0.9 \ldots 1.2 U_{N}$
DC $0.8 \ldots 1.1 U_{N}$
$5 \mathrm{VA} \pm 30$ \%
$50 / 60 \mathrm{~Hz}$
DC 24 V
max. DC 100 mA
DC 21 V with activated device

3 NO, 1 NC contacts
1 delay-release NO contact (K1.3)
The NO contacts $13 \ldots 33$ / $14 \ldots 34$ are safety contacts.
ATTENTION! The NC contact 41-42 and the NO contact 53-54 can only be used for monitoring.
Operate time:
35 ms
Release time
opening in secondary circuit
(S12-S22):
opening in supply circuit:
Release delay of K1:
Contact type:
Nominal output voltage:
Thermal current I_{th} :
Switching capacity
to AC 15:
NO contacts :
NC contacts:
to DC 13:
NO contacts :
NC contacts:
Electrical life
to AC 15 at $2 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$:
to DC 13 at $2 \mathrm{~A}, \mathrm{DC} 24 \mathrm{~V}$:
Permissible operating frequency:
Short circuit strength max. fuse rating
NO contact:
NC contact:
Mechanical life:
$30 \mathrm{~ms} \pm 25$ \%
$100 \mathrm{~ms} \pm 50 \%$
approx. 200 ms
Relay, forcibly guided
AC $400 \mathrm{~V} / \mathrm{DC} 230 \mathrm{~V}$
see continuous current limit curve (max. 10 A in one contact path)

5 A / AC 230 V IEC/EN 60 947-5-1
2 A / AC 230 V IEC/EN 60 947-5-1
4 A / DC $24 \mathrm{~V} \quad$ IEC/EN 60 947-5-1
4 A / DC 24 V
IEC/EN 60 947-5-1
10^{5} switching cycles IEC/EN 60 947-5-1
$>240 \times 10^{3}$ switching cycles
6000 switching cycles / h

10 A gL IEC/EN 60 947-5-1
6 A gL
IEC/EN 60 947-5-1
10×10^{6} switching cycles
General Data
Operating mode:
Temperature range operation:
storage :
altitude:
Clearance and creepage
distances
rated impuls voltage /
pollution degree:
EMC
Electrostatic discharge:
HF irradiation:
Fast transients:
Surge voltages
between
wires for power supply: between wire and ground:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:

Continuous operation
$-15 \ldots+55^{\circ} \mathrm{C}$
at max. 90% humidity
$-25 \ldots+85^{\circ} \mathrm{C}$
<2.000 m
$4 \mathrm{kV} / 2$ (basis insulation) IEC $60664-1$

8 kV (air)	IEC/EN 61 000-4-2
$10 \mathrm{~V} / \mathrm{m}$	IEC/EN 61 000-4-3
2 kV	IEC/EN 61 000-4-4

1 kV IEC/EN 61 000-4-5
4 kV
IEC/EN 61 000-4-5
Limit value class B EN 55011
IP $40 \quad$ IEC/EN 60529

IP 20
IEC/EN 60529
Thermoplastic with Vo behaviour according to UL subject 94 Amplitude 0.35 mm IEC/EN 60 068-2-6 frequency: $10 \ldots 55 \mathrm{~Hz}$

CCC-Data

Nominal voltage $U_{N}: \quad$ AC 24, 42, 48, 110, 127, 230 V
DC 24, 48, 110 V
see continuous current limit curve (max. 5 A in one contact path)

Info
Technical data that is not stated in the CCC-Data, can be found in the technical data section.

Standard type		
BN 5983.53 DC 24 V		
Article number:	0032155	stock item
- Output:	$3 \mathrm{NO}, 1 \mathrm{NC}$ contacts	
- Nominal voltage $\mathrm{U}_{\mathrm{N}}:$	DC 24 V	
- Width:	100 mm	

Variants

BN 5983.53/104:

For switching small loads of $1 \mathrm{mVA} \ldots 7 \mathrm{VA}$ or $1 \mathrm{~mW} \ldots 7 \mathrm{~W}$ in the ranges $0.1 \ldots 60 \mathrm{~V}$ and $1 \ldots 300 \mathrm{~mA}$.
The device is also suitable for switching the maximum switching current. However, this will burn off the gold plating of the contacts, so that switching of small loads is no longer possible afterwards.

BN 5983.53/110:

To avoid latching problems in the case of short voltage drops K2 and K3 are switched definitely off before reset.

BN 5983.53/200:

Redundant switching off with device diversity. Device diversity means that safety relays from different production batches or from different manufacturers are used.

Ordering example for Variants

Characteristics

Characteristics

Current over two rows of contacts

Continuous current limit curves as a function of ambient temperature

Contact service life

Safe switch of, no standing arc max. 1 switching cycle / s

Limit curve for arc-free operation with resistive load

Application Examples

One-channel emergency-stop circuit. This circuit does not have any redundancy in the emergency-stop control circuit. Suited up to SIL2, Performance Level d, Cat. 3

Two-channel monitoring of a safety gate.
Suited up to SIL3, Performance Level e, Cat. 4

Contact reinforcement by external contactors with reduced safety level. Suited up to SIL3, Performance Level e, Cat. 4

Two-channel emergency stop circuit with line fault detection on start button. The unit starts with the negative edge of the start signal (contrary to the function diagram).
If line fault detection is not necessary the links X4-53 and X5-54 can be removed.
Suited up to SIL3, Performance Level e, Cat. 4

Contact reinforcement by external contactors, 2-channel.
The output contacts can be reinforced by external contactors with forcibly guided contacts for switching currents > 10 A . Functioning of the external contactors is monitored by looping the NC contacts into the closing circuit (terminals X3-X4).
Suited up to SIL3, Performance Level e, Cat. 4

Two-pole emergency-stop circuit with emergency stop control device in supply circuit.
Application for long emergency stop loops where the control voltage drops below the minimum voltage of 21 V .

Attention:

Single faults (e.g. line faults at the emergency stop control device) are not detected with this external circuit configuration.
Suited up to SIL3, Performance Level e, Cat. 4

